

B. Sc. (Sem. IV) (CBCS) Examination

Seat No. ____

July - 2021

Mathematics: Paper - M - 09 (A)

(Mathematical Analysis - 2 & Abstract Algebra - 2)

Faculty Code: 003

Subject Code: 1016002 Time: $2\frac{1}{2}$ Hours] [Total Marks: 70 Instruction: Attempt any five questions. 1. (A) Answer the following questions in briefly 4 (1) Define . Separated set (2) Define: Connected set (3) Determine whether the subset {1,2,3} of metric space R is compact or not (4) Define compact metric space (B) Show that subset R-{1,5} is not connected 2 (C) State and prove Bolzano-Weirstrass theorem 3 (D) State and prove theorem of nested intervals 5 2. (A) Answer the following questions in briefly 4 (1) Define: Totally bounded set (2) Define: Disconnected set (3) Define: Countable set (4) Define: Sequential compact metric space (B) Show that every finite subset of a metric space is compact 2 (C) If F is a closed subset of metric pace X and K is a compact subset of X Then prove that $F \cap K$ is also compact 3 (D) Prove that continuous image of connected set is connected 5 3. (A) Answer the following questions in briefly 4 (1) Define Laplace Transform (2) Find L⁻¹ $\left(\frac{1}{s-2}\right)$ (3) Find $L(t^{-1/2})$ (4) Show that $L(1) = \frac{1}{s}$, where s > 0(B) Find L⁻¹ $\left(\frac{s+2}{(s-2)^3}\right)$ 2 (C) Find Laplace transform of $\sqrt{t}e^{2t}$ 3 (D) If $f(t) = e^t$, $t \le 2$ 5 = 3, t>2 then find $L\{f(t)\}$

4.	(A) Answer the following questions in briefly	4
	(1) Find $L(3^t)$	
	(2) Find $L^{-1}\left(\frac{1}{s^3}\right)$	
	(3) Find $L^{-1}\left(\frac{1}{s^2+4}\right)$	
	(4) Show that $L(t) = \frac{1}{s}$	
	(B) Find $L(2t + 5\sin 3t)$	2
	(C) If $L\{f(t)\} = \bar{f}(s)$ then prove that $L\{e^{at} f(t)\} = \bar{f}(s - a)$	3
	(D) Prove that $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right) = \frac{1}{2a}tsinat$	5
5.	(A) Answer the following questions in briefly	. 4
	(1) Find L(te ^t)	
	(2) Write convolution theorem(3) Find L(tsin 2t)	
	(4) Find $L\left(\frac{\sin t}{t}\right)$	
	(B) If $L\{f(t)\} = \bar{f}(s)$ then prove $L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} [\bar{f}(s)]$	2
	(C) Prove that $L^{-1}\left(\log\left(\frac{s+b}{s+a}\right)\right) = \frac{e^{-at} - e^{-bt}}{t}$	3
	(D) Prove that L ⁻¹ $\{\frac{s^2 - a^2}{(s^2 + a^2)^2}\} = \text{tcos at}$	5
6.	(A) Answer the following questions in briefly	4
	(1) Find $L(t^2e^{at})$	
	(2) Find L(tsinht)	
	 (3) Find L(tsin at) (4) Find L(t³e^{-3t}) 	
	(B) If $L\{f(t)\} = \overline{f}(s)$ then prove $L\{\frac{f(t)}{t}\} = \int_{s}^{\infty} \overline{f}(s) ds$	2
	(C) Prove that $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\} = \log\left(\frac{s+b}{s+a}\right)$	3
	(D) Using convolution theorem, prove L ⁻¹ $\left\{ \frac{1}{(s-1)(s^2+1)} \right\} = \frac{1}{2} (e^t - \sin t - \cos t)$	5
7.	(A) Answer the following questions in briefly	4
	(1) Define Principle ideal	
	(2) Define homomorphism(3) Define Ring	
	(4) Define ideal	
	(B) If $\emptyset: (G,*) \to (G',\Delta)$ is a Homomorphism. Then $\emptyset(e) = e'$ where $e \& e'$ are identity elements of $G \& G'$ respectively.	2
	(C) Prove that A Homomorphism $\emptyset: (G,*) \to (G',\Delta)$ is one-one iff k_\emptyset ={e}	3

	(D) If $\emptyset: (G,*) \to (G',\Delta)$ is a Homomorphism. Then prove that Kernel K_\emptyset	5
	is a normal Subgroup of G	
8.	 (A) Answer the following questions in briefly (1) Define Epimorphism (2) Define Division ring (3) Define Field (4) Define Kernel of homomorphism 	4
	(B) Let $\emptyset: (G,*) \to (G',\Delta)$ is Homomorphism. If $H' \leq G'$ then prove $\emptyset^{-1}(H) \leq G$	2
	(C) Find all homomorphism's of (Z,+) onto (Z,+).(D) State and prove first fundamental theorem of homomorphism	3 5
9.	(A) Answer the following questions in briefly	4
	 (1) Define Polynomial (2) If polynomial f = (5,0,0,0,0,) then find order of f (3) Define irreducible polynomial (4) Define Monic polynomial (B) Find inverse of quaternion 1 + i + j + k 	2
	(C) State and prove Remainder theorem of polynomials	3
	(D) State and prove division algorithm for polynomials	5
10.	 (A) Answer the following questions in briefly (1) Define degree of a polynomial (2) Define order of a polynomial (3) Define factor polynomial (4) Define constant polynomial 	4
	(B) If $f(x)=(2,3,4,2,0,0)$ and $g(x)=(4,2,0,0,3,0) \in R[x]$ then find $f(x)+g(x)$.	2
	(C) In R[x], $f(x) = 4x^4 - 3x^2 + 1$ is divided by $g(x) = x^3 - 2x + 1$ then find quotient $q(x)$ and remainder $r(x)$	3
	(D) State and prove factor theorem of polynomials	5